Availability of Mercury Control and Measurement Technologies

November 28, 2007

David C. Foerter

Institute of Clean Air Companies

Virginia DEQ Mercury Symposium Newport News, VA

Who Is ICAC?

- The National Association for Air Pollution
 Control Manufacturers
 - about 100 companies
 - ctive since 1960
- vide Information on the Capabilities of the Ca
 - Federal, State and Local Regulatory Issued
 - Industry Trade Groups & Other Association
 - Public-At-Large
- Produce technical standards and white papers

What Do We Know about Controlling Mercury?

- ☐ Solutions come in different shapes and sizes
- ntrol resulted from collaboration effortween industry, suppliers and R&
- Regulations create market certainty of R&D and commercial competition cost solutions
- Tremendous progress and investment made that resulted in better performance lower costs

Mercury Control Evaluations: ACI Timeline

EPRI: Hudson
OE/EPRI: Comanche

1995

EPRI: Boswell, Sherco, Pleasant Prairie Vanticoke, Miller, Coal Creek, Others

DOE/EPRI: Valley, Powerton

DOE Phase I: Pleasant Prairie, Gaston,

EPRI: Abbott, Laskin, Stanton, Coal Creek Salem Harbor, Brayton Point)

DOE Gaston

ndependence, Big Brown, Council Bluffs, Louisa Meramec, Leland Olds, Laramie River, St. Clair DOE Phase II: Holcomb, Stanton, Yates, Buck, Monroe, Antelope Valley, Conesville,

Industry: Multiple

2006

Dave Johnston, Portland, Lee, Miami Fort

DOE (PI: Presque Isle

rdin, Hawthorn, Mill Creek, se III POE

2007

Commercial: 40+

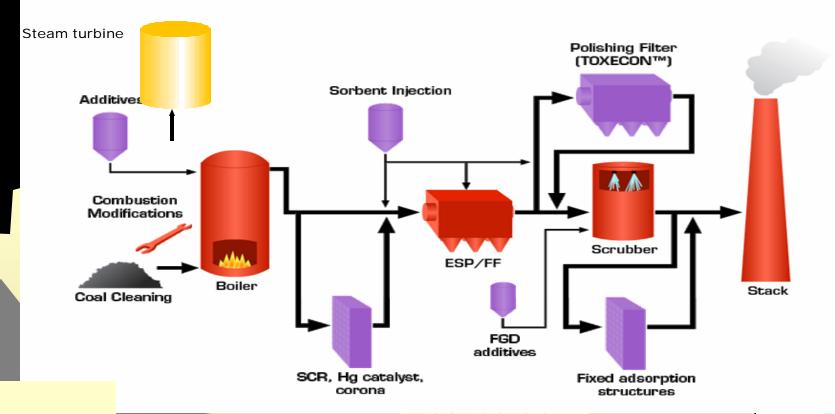
1991

Pilot Testing

2001

Full-Scale Testing

2004


Suite of Control Options

- Co-benefits
 - > SCR, FGD, ESP, FF, etc.
- Enhanced co-benefits
 - Chemical oxidants
 - Adding additional catalyst layers or new oxidizing catalyst
- rbents
 - Activated Carbon Chemically Enhanced activated carbon
 - Non-carbon based sorbents
- bustion modifications
 - In boiler modifications to oxidize mercury and increase amou carbon (i.e. research and demos at Lehigh University and GE
 - State-of-the-Science Ultra-Super Critical Boilers with a
- Precombustion
 - K-fuel: cost in scrubbing coal; can be combined with other of Gasification: up front equipment cost to convert from solid fuel; requires pollutant disposal

Integrated Coal-Fired Emission Controls

Pollutants: $NO_x + SO_2 + Hg + PM + Condensables + CO_2$ Post-Combustion Controls: SCR+ FGD + ACI + ESP/FF+ WESP + Scrubber

Some Bituminous Coal Control Strategies

Bituminous coals typically have moderate-high Cl/Br content and higher sulfur levels:

"the right stuff" for mercury and SO₂ control

Configuration

GD: ACI/PAC, and add fabric filter option if:

esire higher mercury removal efficiency, and

ash sale

Dry FGD: ACI/PAC (may already have fabric

Wet FGD: improve and control mercury oxidation

Co-Benefits/Multipollutant Approach – timing and labor

☐ Wet FGD:

- 19 to 30 months to construct (avg. in mid-20's); 180 man-years
- Components: grinding mill, slurry prep., reactor vessel, dewatering and gypsum stacking

R:

- 13 to 24 months to construct (avg. in low 20's); 17 years
- Components: structural steel, NH₃ injection grid, catalyst reactor bed, catalyst, by-pass duct (?)
- * Need for early planning decisions

Early Demo of Wet FGD Co-Benefit ... Plus

Mount Storm Site Test (WV)

- Eastern Bituminous Coal
 - ✓ medium sulfur (1.82%)
 - ▲ ✓ 4,000 tons/day
- 1662 MW (3 units combined)
- Air Pollution Controls
 - ✓ SCR 2 layers
 - **✓ ESP**
 - **✓ Wet FGD** forced oxidation limestone

Results of Co-Benefit ... Plus

- 71-78% mercury removal with only wet FGD
 - some mercury re-emission at outlet
- 80% mercury removal with wet FGD plus additive (w/o SCR)
 - additive stopped mercury re-emission
 - SO₂ removal by wet FGD system not impacted by additive technology
- 90% slus mercury removal with wet FGD & SCF
 - similar results with/without FGD additive (no mer emission to control)
- Demonstrated improvements using wet FGD at process (B&W patented sodium hydrosulfide)
 - Improved removal of mercury w/o SCR in-serv
 - Cost-effective incremental mercury removal (w/o activated carbon injection)

egulation

Equipment

Capital Costs
500 MW Plant

NOx

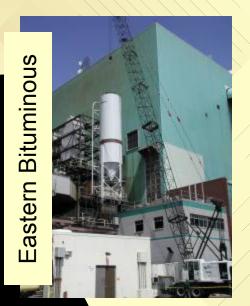
FGD & SCR

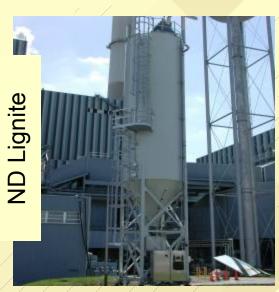
\$150 Milli

Mercury

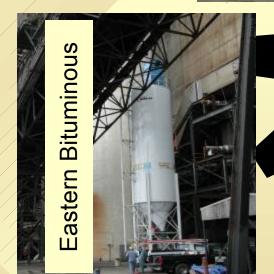
ACI

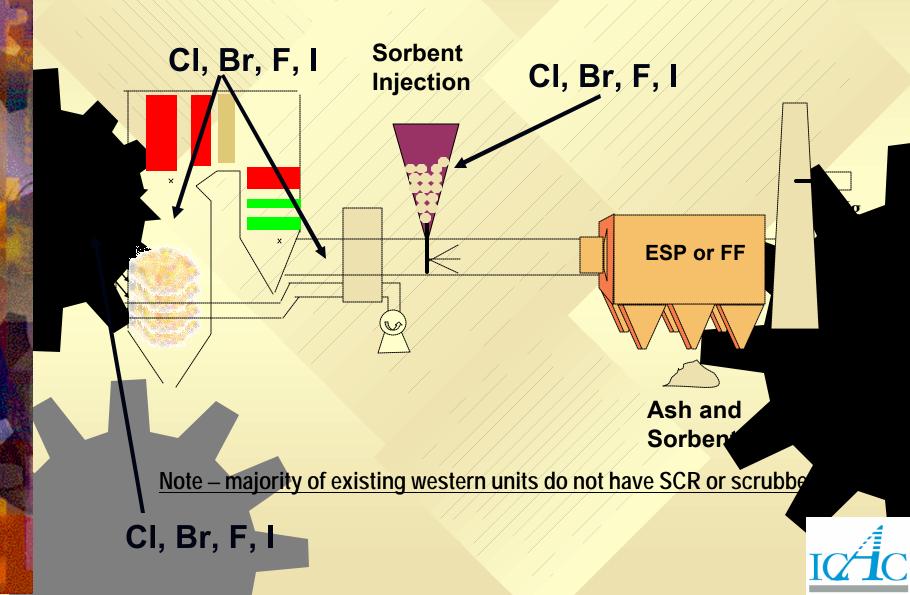
\$1 Millia


More than 70 Commercial Contracts for Mercury Specific Control Awarded to Date

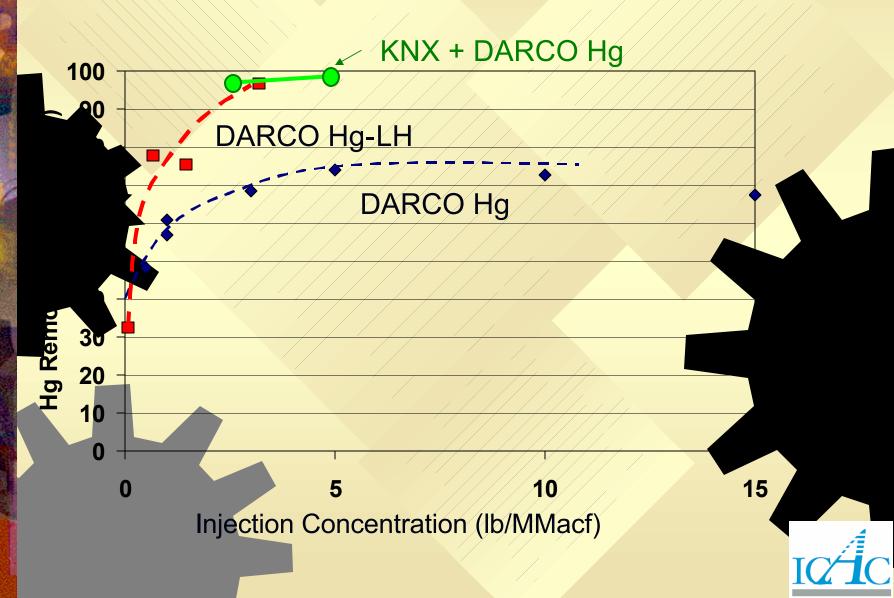

- Booked for 29 GW of capacity nearly 10% of total U.S. coal-fired capacity
 - 8 Hg Control Systems Currently Operating
 - Both on New Boilers and Existing Boilers
 - Poth Small and Large Applications; 75 800 MW
 - Coal Types Bituminous, Subbituminous, and Lignite Coals and Blends
 - oad Range of APC / Plant Configurations
 - list of bookings at www.icac.com
 - DXECON
 - SDA/FF
 - **ESP**
 - > Multi-pollutant
 - **ESP/WFGD/WESP**
 - FT-SNCR/CDS/FF
 - SCR/FF/WFGD
 - SCR/FF/WFGD
 - > HS-ESP/FF/WFGD
 - Cold-Side ESP

- Cold-Side ESP
- > ESP/FF (TOXECON)
- > SCR/FF
- > ESP/FF
- > ESP/FF Parallel Flow
- > ESP/WFGD
- Lime Inj./ESP/WFGD/Wł
- > CFB Boilers/SNCR/ACI/CDS-DFGD/FF


ACI Evaluations on Over 30 Units with Various Configurations



Extensive Data Collection and Analysis for Each Full-Scale Program


TABLE OF CONTENTS

VTRODUCTION	1	
ECUTIVE SUMMARY	2	
RIPTION OF OVERALL PROGRAM	3	
COMB PROJECT OBJECTIVES AND TECHNICAL APPROACH	6	
Baseline Mercury Removal with 100% PRB Coal	22	
Coal Blending Tests	23	
Sorbent Screening Tests		
ametric Tests		
Long-Term Testing	35	
Characterization of Process Solids and Liquids	4	
Balance-of-Plant Impacts		
ECONOMIC ANALYSIS		
CONCLUSIONS	6.	
APPENDIX B Coal Reports	85	
APPENDIX D Sample and Data Management Plan		
APPENDIX E Baseline Source Test Results		
APPENDIX F Parametric Source Test Results	307	
APPENDIX G Long-Term Source Test Results	371	
APPENDIX H Bag Analysis Report	599	
APPENDIX I Reaction Engineering International Memo	602	م مر
	T	

Enhancing Mercury Removal for Western Coals

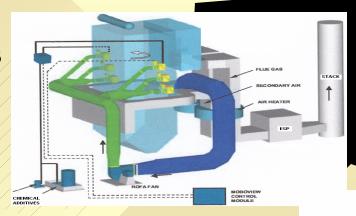
Coal Additives and Brominated AC on a PRB Unit with only an ESP

Ash Issues

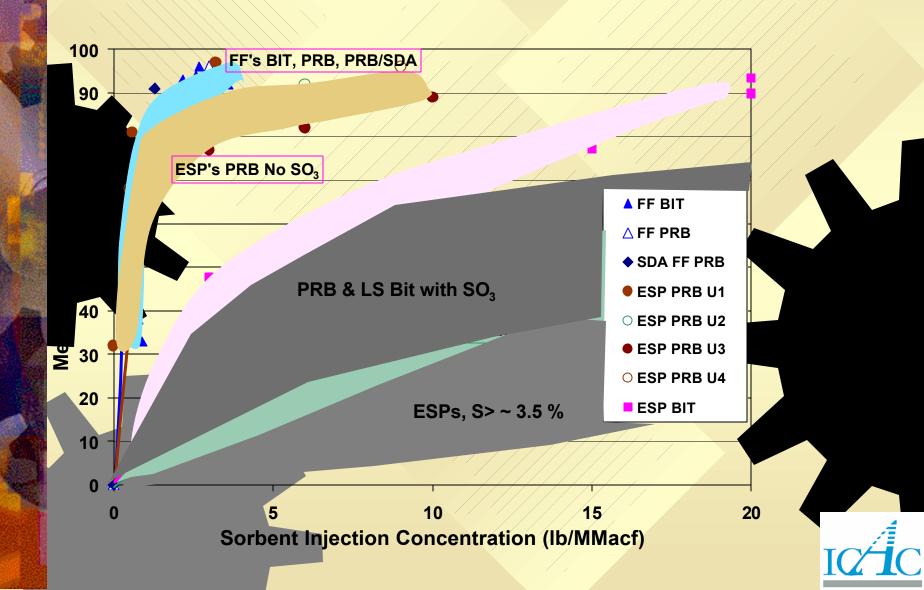
- ☐ The mercury captured by PAC, LOI, and ash appears to be very stable and unlikely to reenter the environment.
- The presence of PAC will most likely prevent the sale of ash for use in concre
 - This will impact 30% of the units in the U.S.
- Several developing technologies to address the problem:
 - Separation
 - Combustion
 - Chemical treatment
 - Non-carbon sorbents
 - Configuration solutions such as EPRI TOXECON

EPRI TOXECON™ Configuration **TOXECON™** Sorbent Injection **PJFF Electrostatic** Coal **Precipitator** Fly Ash (1%) + AC Fly Ash (99%)

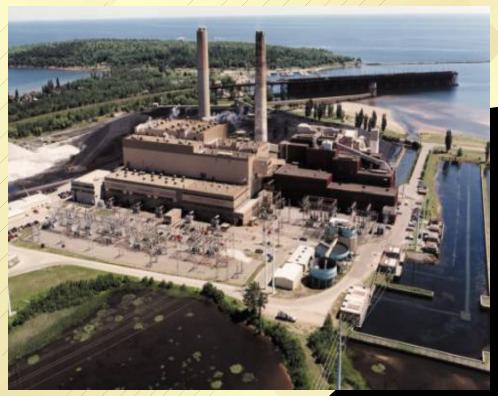
Additional Multipollutant Control Options Conventional Power Plant with ECO® Installed


Powerspan ECO Process

- Integrated Control Approach
- High Energy Corona
 - **OXECON II**
- id-ESP PAC Injection
- aintain Ash Sale Ability
 - Rofa & Rotamix Technologies
- MINPlus Sorbent Injection in Boiler
- > Scrubber After Boiler


Evergreen (KFx) K-Fuel Process

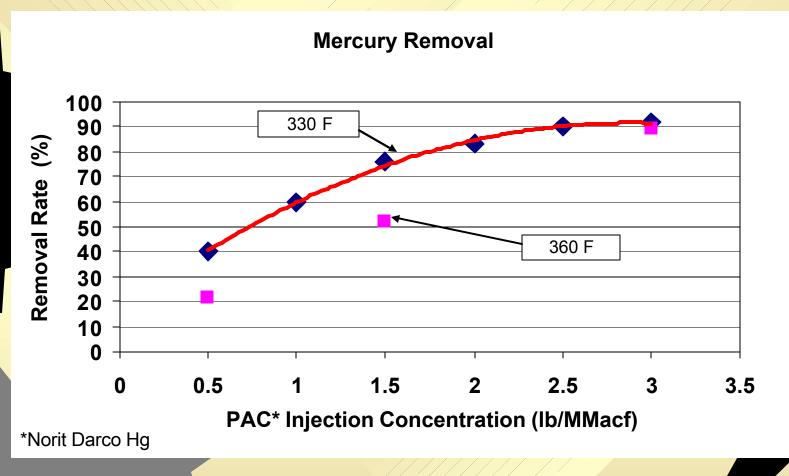
- Coal Cleaning
- High Temp. and Pressure
- Western Low Btu Coals



Summary of Mercury Control with PAC

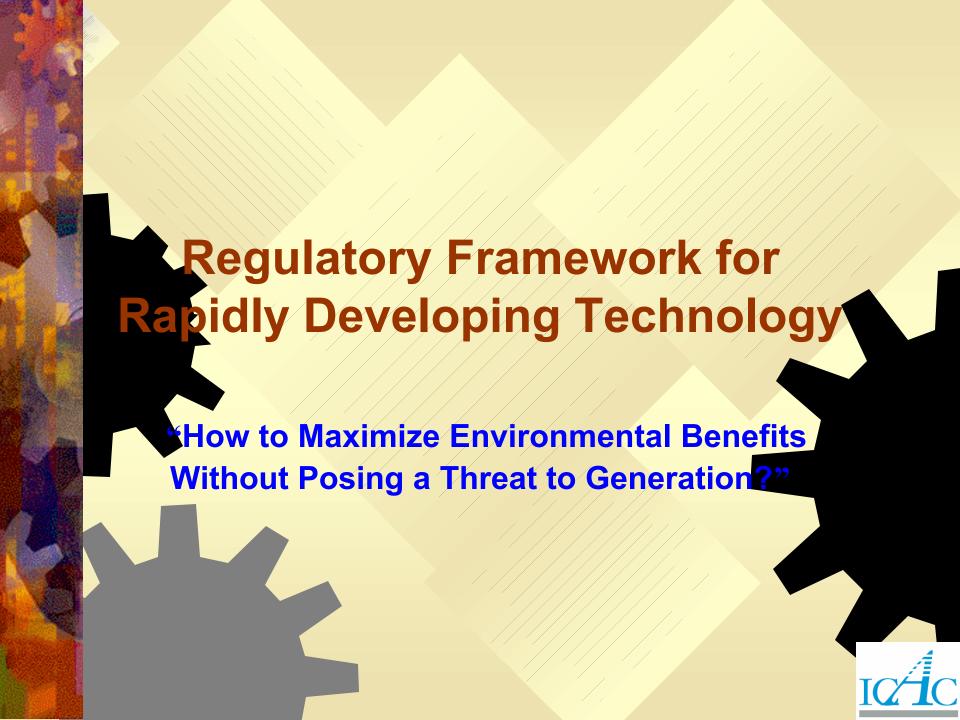
1st Commercial Mercury Control System TOXECONä – 270 MW Demonstration

- Clean Coal Program –
 We Energies and DOE
 - Marquette MI Inits 7-9
 - RB Coal from Antelope and Spring Creek Mines
- \$53.3M
 - \$24.9M DOE
 - \$28.5M We Energies



TOXECONa Mercury Control Equipment

Preliminary Results from Presque Isle TOXECONÔ



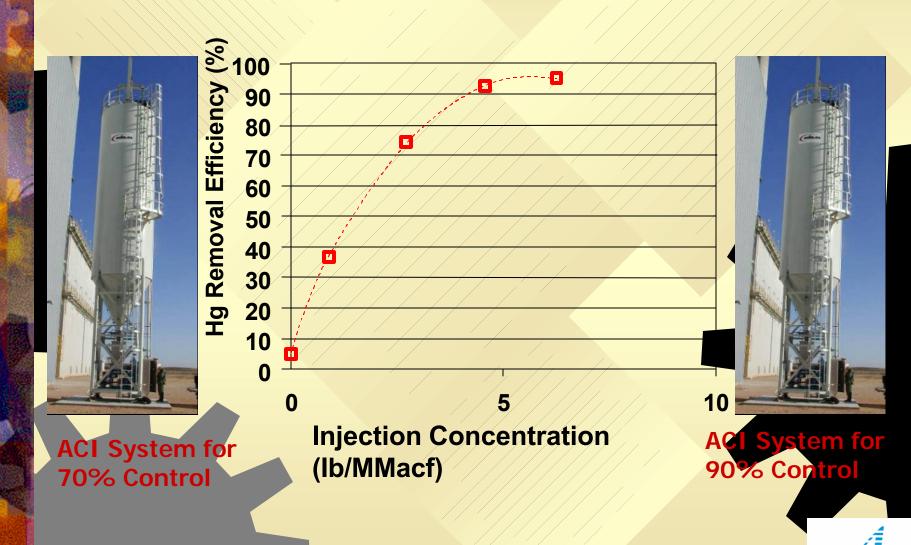
Preliminary Results from Presque Isle TOXECONÔ

- Operational Issues
 - Hopper Fires
 - Hopper Rat-Holing
 - Material Handling-Dusting
 - Bag Cage Separation
 - **▶** Condensation At Start-up
 - High Flue Gas Temp Reduces Hg Removal Efficiency

Account for Plant by Plant Variations in Cost and Performance

□ Fabric Filters:

- Most predictable performance
- Current range 85-95%
- With proper design 90%+ is readily achievable.


ESPs:

- Every ESP operates differently
- Current range of performance 70-90%

Encourage Early Adoption

- □ Economic incentives for early compliance are needed to offset risks with new technology
- Early installations allow users and vendors to in additional experience operating the chnology, documenting performance and dressing any issues that may arise
- A regulation that provides a ramping of nstallations overcomes concerns with sup of materials and labor

Setting Lower Achievable Limits Early Can Lead to Greater Reductions Later

Examples of Regulatory Flexibility in a Mercury Rule

- Account for differences in costs and performance
 - NACAA (STAPPA/ALAPCO) Model Rule: Averaging among fleet
 - Georgia: Intra-State averaging
 - Illinois: Soft-landing provision
 - Minnesota: Different time-lines for wet scrubbers
- ncourage early adoption
 - Seorgia: Banking provisions
 - New Hampshire: Banking provisions
- Two-phase standard
 - NACAA Model Rule
 - Massachusetts
 - Pennsylvania
 - Wisconsin
 - Georgia

General Improvements for Mercury Control

- Techniques to enhance and control mercury oxidation
- echniques to minimize re-emission
- tential impacts on by-products
- Less capital intensive techniques
- Cost of mercury removal is coming down

Continuous Emissions Monitoring

- Continuous Hg measurements are being made today
 - Multiple suppliers of instruments
 - Technology rapidly advancing toward increased reliability and less frequent maintenance so it could be operated by plant personnel
 - EPA working on mercury gas generator certification
- pliance and/or real-time control information
- arbon canister (Appendix k) available for production and compliance measurement
- * CEMS that have passed RATA are at least as accurate as the reference method

Conclusions

- There will be significant plant-to-plant variations in costs to control mercury emissions
- lexibility in the regulation is critical to aximize mercury removal while minimizing APC retrofit impacts on the aging coal-fired boilers in the US
- ☐ Technology rapidly improves resultant better performance at lower costs
- Commercial mercury control systems are available from a number of suppliers

Institute of Clean Air Companies

1730 M Street NW

Suite 206

Washington, DC 20036

(202) 457-0911

www.icac.com